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Anharmonic Normal Mode Analysis of Elastic Network Model Improves
the Modeling of Atomic Fluctuations in Protein Crystal Structures
Wenjun Zheng*
Physics Department, University at Buffalo, Buffalo, New York
ABSTRACT Protein conformational dynamics, despite its significant anharmonicity, has been widely explored by normal mode
analysis (NMA) based on atomic or coarse-grained potential functions. To account for the anharmonic aspects of protein
dynamics, this study proposes, and has performed, an anharmonic NMA (ANMA) based on the Ca-only elastic network models,
which assume elastic interactions between pairs of residues whose Ca atoms or heavy atoms are within a cutoff distance. The
key step of ANMA is to sample an anharmonic potential function along the directions of eigenvectors of the lowest normal modes
to determine the mean-squared fluctuations along these directions. ANMA was evaluated based on the modeling of anisotropic
displacement parameters (ADPs) from a list of 83 high-resolution protein crystal structures. Significant improvement was found
in the modeling of ADPs by ANMA compared with standard NMA. Further improvement in the modeling of ADPs is attained if the
interactions between a protein and its crystalline environment are taken into account. In addition, this study has determined the
optimal cutoff distances for ADP modeling based on elastic network models, and these agree well with the peaks of the statistical
distributions of distances between Ca atoms or heavy atoms derived from a large set of protein crystal structures.
INTRODUCTION
Conformational dynamics at the atomic level is increasingly

recognized as important in protein functions including

protein-ligand interactions, protein-protein interactions, and

allosteric regulation (1–3). Protein dynamics spans a wide

range of timescales, from femtoseconds to seconds. Of

particular interest is the long-time dynamics (microseconds

to seconds) in large protein complexes, which is far beyond

the timescales (nanoseconds to microseconds) of atomistic

molecular dynamics (MD) simulations (4) despite fast-

advancing computing technology (5). To capture such

slow protein dynamics, normal mode analysis (NMA) was

developed and has been widely applied (6–10). In a typical

NMA of protein dynamics, an atomic or coarse-grained

potential function is approximated by a harmonic potential

near a minimal-energy conformation, from which a Hessian

matrix (the second derivatives of potential function) is calcu-

lated. Then, a set of normal modes are solved from the

Hessian matrix, and these can be used to describe small-

amplitude atomic motions at low temperatures. Under

harmonic assumption, the inverse of the eigenvalue of a

normal mode is proportional to the mean-squared fluctuation

(MSF) of atomic coordinates along the direction of its

eigenvector.

To facilitate the application of NMA to large protein

complexes, it is often performed based on a coarse-grained

protein structural model (11). In recent studies, elastic

network models (ENMs), including the anisotropic network

model (ANM) (12–14) and its isotropic variation, the

Gaussian network model (GNM) (15,16), have been devel-
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oped to model protein dynamics at amino acid resolution.

The ENM is usually constructed based on a Ca-only repre-

sentation of protein structures, where pairs of residues

whose Ca atoms or heavy atoms are within a cutoff distance

are connected by elastic springs with a uniform (12) or

distance-dependent (17,18) force constant. Such dramatic

simplification allows the coarse-grained normal modes to

be calculated efficiently without energy minimization. Early

studies have shown that the large-scale collective motions

predicted by NMA of ENMs are insensitive to the dramatic

simplification in ENMs (13,14). Indeed, the lowest normal

modes calculated from ENMs were found to compare well

with many large-scale conformational changes observed by

crystallography (13,19). Numerous studies have established

ENM as an efficient means of probing the functionally

relevant protein dynamics with virtually no limit in timescale

or system size (20–25).

Despite the great success of NMA, its underlying assump-

tion of harmonicity remains questionable. It is well known

that protein dynamics at physiological or lower temperatures

is highly anharmonic thanks to various factors, including

solvation effect and the multiminima potential energy

function. For example, an early study using NMA and MD

simulation found that an isolated bovine pancreatic trypsin

inhibitor (BPTI) exhibits marked anharmonic dynamics at

temperatures of 100–120 K (26). Therefore, the standard

NMA is quantitatively inaccurate to describe the anharmonic

atomic fluctuations in protein structures, which often results

in an underestimation of the MSF (27). To explore the anhar-

monic aspects of protein dynamics, the quasiharmonic

analysis was developed based on the principal component

analysis of an MD trajectory (28). It yields quasiharmonic

modes that can be compared with the normal modes from

standard NMA. In one simulation study of BPTI, it was
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found that the first quasiharmonic mode shows barrier

crossing events on an anharmonic energy surface, whereas

the higher quasiharmonic modes appear to be largely

harmonic (27). In another simulation study of BPTI (29), it

was shown that the larger the MSF of a quasiharmonic

mode, the greater the degree of anharmonicity in its motion.

For BPTI, the anharmonic modes represent only 12% of the

total number of variables, but they account for 98% of the

total MSF (29). Therefore, a proper account of anharmonic-

ity for the lowest quasiharmonic or normal modes is critical

to accurate modeling of protein dynamics.

Despite the strong effects of anharmonicity on the magni-

tude of atomic fluctuations, it has been shown that the eigen-

vectors of the lowest modes constitute an essential subspace

of collective coordinates, which offer good descriptions of

collective motions in proteins (30,31). It is argued that the

directions (but not the magnitude) of these collective

motions as captured by the eigenvectors of the lowest modes

are insensitive to details of microscopic interactions and

solvent damping (25). Therefore, a promising recipe for

modeling anharmonicity within the framework of NMA is

to keep the eigenvectors (but not eigenvalues) of standard

NMA, and then sample atomic fluctuations/motions along

the directions of these eigenvectors using an anharmonic

potential function (see Methods). This general approach is

here referred to as anharmonic NMA (ANMA). A similar

strategy has been adopted in previous studies, where the

eigenvectors of lowest normal modes were utilized to

enhance MD simulations (32), refine x-ray diffraction data

(33), and fit low-resolution electron microscopy maps (34)

and crystallographic B factors (35).

This study employs ANMA to model anharmonicity

within the framework of ENM. The ENM potential function,

despite its quadratic form (Eq. 1), is actually anharmonic in

Cartesian coordinate space. This study will evaluate how

ANMA improves the modeling of anisotropic atomic fluctu-

ations obtained by x-ray crystallographic studies of protein

structures. Atomic fluctuations in protein crystal structures

have been traditionally quantified by the isotropic tempera-

ture factors (or B factors), which use an isotropic Gaussian

distribution to characterize the spread of electron density

of each atom (36). Recently, a growing number of high-

resolution protein crystal structures have been refined using

anisotropic Gaussian distributions, which characterize

atomic fluctuations by a symmetric tensor with six indepen-

dent elements called anisotropic displacement parameters

(ADPs) (37,38). Unlike the B factors, the ADPs describe

not only the magnitude but also the direction of mean-

squared atomic fluctuations. Therefore, they offer richer

information of protein dynamics in crystalline states.

Modeling of ADPs based on NMA has been conducted in

several recent studies (39–44), which only considered

harmonic contributions to protein dynamics. This study is,

to our knowledge, the first in which anharmonicity is consid-

ered in the NMA-based modeling of ADPs.
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Based on the modeling of ADPs from a large set of 83

high-resolution protein crystal structures studied previously

(39,41,43), the main findings are summarized as follows:

1. ANMA significantly improves the modeling of aniso-

tropic atomic fluctuations described by ADPs, especially

for low cutoff distances of ENMs. Unlike the standard

NMA, ANMA is not susceptible to the tip effect, which

causes anomalously large fluctuations of some protruding

structural elements of a globular protein (45). Explicit

accounting of the interactions between a protein and its

crystalline environment leads to further improvement in

the modeling of ADPs.

2. By analyzing the cutoff-distance dependence of ADP

modeling, this work determines the optimal cutoff dis-

tances for three ENM schemes (ANMCa, ANMatom, and

DNM; see Methods). The values of optimal cutoff

distances correspond to a secondary peak in the distribu-

tion of Ca-Ca distances, and the upper bound of a broad

peak in the distribution of heavy-atom distances, which

are derived from a large set of protein crystal structures.

This finding hints at the dynamic importance of indirect

atomic interactions beyond the range of direct interactions

via van der Waals or hydrogen-bond forces.
METHODS

ENM for an isolated protein structure

An ENM is constructed based on the Ca coordinates of a protein crystal

structure. The potential energy of an ENM is

E ¼ 1

2

X
i<j

Cij

�
dij � dij;0

�2
; (1)

where Cij is the force constant of the spring connecting Ca atoms i and j, dij is

the atomic distance between Ca atoms i and j, and dij,0 is the value of dij

given by the crystal structure. Three schemes of force constant assignments

are considered here:

1. ANMCa:

Cij ¼
C if dij;0 < Rc;
0 otherwise

;

�
(2)

where Rc is a cutoff distance that varies between 7 and 20 Å, and the value of

constant C is determined by fitting the experimental ADPs (see below).

2. ANMatom:

Cij ¼ C
X
i1;j1

q
�
Ratom � di1j1;0

�
; (3)

where q () is the Heaviside function, and the summation is over all pairs of heavy

atoms of residues i and j within a cutoff distance Ratom (Ratom varies between

4 and 15 Å). Here, i1 and j1 are indices for the heavy atoms of residues i and j.

3. DNM:

Cij ¼ C
X
i1;j1

q
�
Ratom � di1j1;0

�
d2

i1j1;0

: (4)

The DNM was proposed by Kondrashov et al. (39), who set force

constants for several distance ranges to the reciprocal of the total number

of atomic contacts in each range. Because the number of atomic contacts
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grows quadratically with distance (assuming the atomic density is constant),

this work’s DNM formulation is essentially a continuous counterpart of the

original DNM (39).

The Hessian matrix, H, is calculated as the second derivative of potential

energy E (see Eq. 1) with respect to the Cartesian coordinates of Ca atoms.

For a protein structure with N residues, H contains N � N superelements

(called Hij) with size 3 � 3:

Hij ¼

2
664

v2E

vxivxj

v2E

vxivyj

v2E

vxivzj

v2E

vyivxj

v2E

vyivyj

v2E

vyivzj

v2E

vzivxj

v2E

vzivyj

v2E

vzivzj

3
775; (5)

where xi,yi, and zi are the Cartesian coordinates of the Ca atom i.

A subset of total 3N normal modes is then solved. For each mode m,

its eigenvalue (represented by lm) and eigenvector (represented by Vm) are

obtained by solving HVm ¼ lmVm.

Anharmonicity of the ENM potential function

Although the ENM potential function in Eq. 1 has a quadratic form, it is

actually anharmonic in terms of Cartesian coordinates. In fact, the NMA

of ENM is based on the Taylor expansion of Eq. 1 truncated at the second

order, with higher-order anharmonic terms ignored. Let us consider the

elastic interaction energy between Ca atoms i and j after they undergo

three-dimensional displacements D~ri and D~rj from their equilibrium posi-

tions. This energy is expanded to the fourth order as follows (for a detailed

derivation, see Supporting Material):

1
2
Cij

�
dij � dij;0

�2

¼ 1
2
Cij

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dij;0 þ Drij;L

�2þDr2
ij;T

q
� dij;0

i2

� Cijd
2
ij;0

2

h
a2 þ ab2 þ b4

4
� a2b2

þ fifth� or higher � order terms
i
;

(6)

where the relative displacement ðD~rj � D~riÞ is partitioned into a longitudinal

component, Drij;L ¼ ðD~rj � D~riÞ$~n0
ij , and a transverse component,

Drij;T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD~rj � D~rij2 � Dr2

ij;L

q
, and ~n0

ij is the unit vector pointing from

the equilibrium position of Ca atom i to that of Ca atom j, a ¼ Drij;L=dij;0,

and b ¼ Drij;T=dij;0. If the Taylor expansion in Eq. 6 is truncated at the

second order, only the longitudinal component, Drij;L, contributes, whereas

the transverse component, Drij;T , does not. Therefore, a proper modeling of

transverse fluctuations between pairs of Ca atoms requires third- or higher-

order terms of Eq. 6. This cannot be achieved in standard NMA, which

ignores these anharmonic terms. To evaluate the effect of anharmonic terms

on atomic fluctuations, I sample along the direction of the eigenvector of

each mode using the exact form of ENM potential energy (Eq. 1).

To demonstrate the anharmonicity of ENM potential energy, this study

has shown the ENM energy profiles for the displacements along the eigen-

vectors of the lowest 10 modes, which are solved for an Escherichia coli

hppk crystal structure (using ANMCa with Rc¼10 Å) (see Fig. S1 in the Sup-

porting Material). Significant deviation from a harmonic potential is indeed

observed, accompanied by slight asymmetry between positive and negative

displacements (Fig. S1).

ENM for a protein structure interacting
with a crystalline environment

To model the effects of crystal packing on protein dynamics, I construct

a Ca-only ENM consisting of two components: the Ca atoms of a main
protein structure (corresponding to an asymmetric unit of a protein crystal)

and an environment that includes the Ca atoms of neighboring protein mole-

cules in a crystal. To reduce system size, the environment is truncated by

keeping the Ca atoms of neighboring molecules within 25 Å from the Ca

atoms of the main protein structure (43). The Ca coordinates of such a trun-

cated environment are generated using the What If webserver (http://swift.

cmbi.ru.nl/servers/html/index.html). To reduce the computing cost, one

assumes that only the Ca atoms of the main protein structure can move,

whereas those of the environment are fixed (43).

The potential energy of the two-component ENM is

E ¼ 1

2

X
i<j

Cij

�
dij � dij;0

�2þ 1

2
fenv

X
i;I

CiIðdiI � diI;0Þ2; (7)

where i and j (I) are indices for Ca atoms in the main structure (environment),

Cij (CiI) is the force constant of the spring connecting Ca atoms i and j (I),
dij(diI) is the atomic distance between Ca atoms i and j (I), and dij,0 (diI,0)

is the value of dij given by the crystal structure. A parameter fenv within

the range [0, 1] is introduced to tune the strength of protein-environment

interactions. fenv¼ 0 corresponds to the case of an isolated protein structure

(see Eq. 1). fenv¼ 1 if one assumes equal strength of interprotein and intra-

protein interactions. As shown in a recent work, a small fenv (%0.05) should

be used to accurately model protein dynamics in crystalline states (43).

A small fenv implies significantly weaker interactions between neighboring

proteins than within a protein (for details, see Hafner and Zheng (43)).
Calculation of ADPs and B factors using ANMA
and NMA

Based on NMA, the covariance matrix of Ca coordinates of the main protein

structure can be constructed as�
uuT
�
¼
X

m

wmVmVT
m; (8)

where wm gives the magnitude of MSF along the direction of eigenvector Vm

of mode m, and the summation is over a subset of lowest normal modes (see

below). Under the harmonic assumption of NMA, wm¼ kBT/lm, where kB is

the Boltzmann constant and T is temperature. In ANMA, wm is determined

by uniformly sampling the ENM potential function (see Eqs. 1 and 7) along

the direction of Vm:

wm ¼

PL
l¼�L

��DXmlj2e�EðDXmlÞ=kBT

PL
l¼�L

e�EðDXmlÞ=kBT

; (9)

where DXml ¼ ðlAm=LÞVm is the lth displacement vector of Ca atoms along

the direction of Vm, the maximal magnitude Am is chosen such that

EðDXmLÞR5kBT, and L is the number of sample displacements in the direc-

tion of Vm(or -Vm). To ensure good convergence, L is set to 20.

For an isolated protein, the potential energy function of Eq. 1 is used to

sample along the directions of eigenvectors of a selected subset of normal

modes, which include the lowest 5% of modes with positive eigenvalue,

and nontranslation/nonrotation zero modes, if present. The nontranslation/

nonrotation zero modes often result from the low connectivity of a subset

of residues to the rest of the ENM, which tends to occur when a relatively

small cutoff distance, Rc, of ENM is used. These zero modes cannot be prop-

erly considered in standard NMA because of their anomalous contributions

to atomic fluctuations. The translation/rotation zero modes are excluded

because their contributions to atomic fluctuations are anomalous for an iso-

lated protein. For a protein interacting with its environment, the potential

energy function of Eq. 7 (with fenv¼ 0.05) is used to sample along the direc-

tions of eigenvectors of a selected subset of normal modes, which includes

the lowest 5% of modes with positive eigenvalue, and all zero modes
Biophysical Journal 98(12) 3025–3034
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(including six translation/rotation modes). The translation/rotation modes

can be included because their contributions to atomic fluctuations are no

longer anomalous in the presence of protein-environment interactions.

The anharmonicity of mode m is assessed by the parameter-

AHm ¼ lmwm=kBT(AHm< 1 if the anharmonicity reduces the MSF along

mode m; AHm> 1 if the anharmonicity increases the MSF along mode m).

It is noted that AHm¼ 1 does not necessarily mean perfect harmonicity.

AHm values are averaged over the above selected subset of normal modes

to assess their overall anharmonicity.

The ith 3� 3 diagonal block of the covariance matrixhuuTi gives the theo-

retical prediction of the ADP tensor for Ca atom i:

�
uuT
�

ii
¼

2
64
�
dx2

i

�
hdxidyii hdxidzii

hdxidyii
�
dy2

i

�
hdyidzii

hdxidzii hdyidzii
�
dz2

i

�
3
75¼

2
64

U11 U12 U13

U12 U22 U23

U13 U23 U33

3
75;

(10)

where the diagonal elements U11, U22, and U33 give the MSF of Ca atom i
along the x, y, and z directions, and the off-diagonal elements U12, U13, and

U23 describe the covariance among the displacements of Ca atom i along the

x, y, and z directions. Together, the six ADP elements determine a three-

dimensional Gaussian distribution function that describes both the direction

and magnitude of the atomic fluctuations (38). For fixed probability value,

the distribution is ellipsoidal, with a directional preference along the long

axis, which is given by the eigenvector of the ADP tensor with the largest

eigenvalue. The anisotropy of the Gaussian distribution is defined as the

ratio of the smallest to the largest eigenvalue of the ADP tensor.

The B factor is related to the trace of the ADP tensor as

B ¼ 8p2ðU11 þ U22 þ U33Þ=3: (11)

Comparison between theoretical
and experimental ADPs

To fit the theoretical ADPs (Eq. 10) to experimental ADPs for a protein

structure with N Ca atoms (one ADP tensor per Ca atom), the force constant

parameter, C (see Eqs. 2–4), is adjusted so that the sum of 3N diagonal

elements matches up between the theoretical and experimental ADPs. Three

metrics are used to assess the similarity between two ADP tensors (repre-

sented as U and V).

Real-space correlation coefficient

The real-space correlation coefficient is calculated to evaluate the overlap inte-

gral of two three-dimensional Gaussian distributions given by U and V (38):

ccðU;VÞ ¼
�
detU�1detV�1

�1=4	
detðU�1 þ V�1Þ=8


1=2
: (12)

Based on the real-space correlation coefficient, the modified correlation coef-

ficient (ccmod) is introduced to evaluate the directional similarity of two ADPs:

ccmodðU;VÞ ¼
ccðU;VÞ � ccðU;V�Þ

1� ccðU;V�Þ ; (13)

where V* is a 3 � 3 tensor generated by taking the eigenvectors of U and

using the eigenvalues of V, with the largest and smallest switched, to define

the two ellipsoids with perfect misalignment (39). ccmod is 1.0 (0) if the two

ellipsoids are perfectly aligned (misaligned).

Kullback-Leibler distance

The Kullback-Leibler (KL) distance (46) evaluates the difference between

the three-dimensional Gaussian distributions a and b as defined by U and

V (40). The KL distance can be expressed in terms of the eigenvalues
Biophysical Journal 98(12) 3025–3034
(dak and dbk, k ¼ 1,2,3) and eigenvectors (vakand vbk, k ¼ 1,2,3) of U and

V as follows:

Dab ¼ �
3

2
þ 1

2

X3

k¼ 1

ln
dbk

dak

þ 1

2

X3

k¼ 1

X3

l¼ 1

dak

dbl

jvT
akvblj2: (14)

Since the KL distance is asymmetrical ðDabsDbaÞ, the arithmetic average

Dab þ Dba=2 was calculated (40). Note that Dab diverges if the distribution

b is highly anisotropic (with a near-zero eigenvalue). To avoid such diver-

gence, this study uses min Dab;Dbagf instead of ðDab þ DbaÞ=2 as this

study’s KL distance metric (43).

Pearson correlations

The above two metrics evaluate only the directional similarity of two ADPs.

To include the magnitude of ADPs in the comparison, this study computes

the Pearson correlation (PCall) between two sets of ADPs as two 6N
0
-dimen-

sional vectors ~U and ~V(40) (N
0
is the number of ADPs):

PC ¼

P6N0

j¼ 1

�
~Uj � h~Ui

��
~Vj � h~Vi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP6N0

j¼ 1

�
~Uj � h~Ui

�2 P6N0

j¼ 1

�
~Vj � h~Vi

�2

s : (15)

The Pearson correlations is also calculated for 3N
0

diagonal and 3N
0

off-diagonal ADP elements separately (PCdiagonal and PCoffdiagonal, respec-

tively), as well as the Pearson correlation between theoretical and experi-

mental B factors (PCB) (40).

Crystallographic dataset for model evaluation

The modeling of ADPs is evaluated using a set of 83 high-resolution crystal

structures previously studied in Kondrashov et al. (39). From the ANISOU

records of these PDB structures, 16,852 usable ADPs are collected for those

Ca atoms with occupancy of 1.0 (though all Ca atoms are included in the

construction of ENM).

Following Kondrashov et al. (39), for the evaluation of four Pearson

correlations, all 16,852 ADPs are used; for the evaluation of two directional

metrics (ccmod and KL distance), a subset of 6784 ADPs with aniso-

tropy %0.5 are used.

Evaluation of the statistical significance
of improvement in ADP modeling

The ADP similarity metrics defined above are calculated for 6784 ADPs from

83 PDB structures using both NMA and ANMA. For a given metric S, the

difference between NMA and ANMA, SANMA - SNMA, is calculated for

each usable ADP (if S is ccmod or KL distance) or PDB structure (if S is PCall,

PCB, PCdiagonal, or PCoffdiagonal). To evaluate the statistical significance of this

difference, its average ðhSANMA � SNMAiÞ and standard deviation ðsdSÞ over

6784 usable ADPs or 83 PDB structures is calculated. Then, a Z score for S is

defined as

ZS ¼ hSANMA � SNMAi=
�
sdS=

ffiffiffiffiffiffiffiffiffiffi
Nsamp

p �
; (16)

where Nsamp¼ 6784 if S is ccmod or KL distance, and Nsamp¼ 83 if S is PCall,

PCB, PCdiagonal, or PCoffdiagonal. (For KL distance, a minus sign is added to

Eq. 16 to make ZS positive). A large Z score indicates high statistical signif-

icance for the improvement in ADP modeling from NMA to ANMA.
RESULTS

To explore how the anharmonicity of the potential energy

function affects NMA-based modeling of atomic fluctuations
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in protein crystal structures, this study has proposed and per-

formed an anharmonic NMA (ANMA) in the absence and

presence of interactions between a protein and its crystalline

environment. This study focuses on the anharmonicity of

ENM potential energy function. ANMA has been systemat-

ically compared with standard NMA based on the modeling

of a large set of ADPs from 83 high-resolution protein crystal

structures (39). This work now presents the findings based

on the modeling results.
ANMA improves ENM-based ADP modeling

In previous ENM-based studies of atomic fluctuations in

protein crystal structures (17,39–41,43,44,47,48), it was

implicitly assumed that the atomic fluctuations are harmonic.

Thus, the MSF along the direction of the eigenvecgtor of a

normal mode is proportional to the inverse of its eigenvalue.

This is not a realistic assumption for protein dynamics at

physiological temperature or crystallographic temperature

(26). There are two main sources of anharmonicity in protein

dynamics: the presence of multiple minima in a potential

energy function and the deviation of a single-minimum

potential function from a harmonic well. Many previous

studies have addressed the former case using MD simula-

tions and quasiharmonic analysis (27,29). Here, the latter

case is addressed. In particular, this study explores how the

anharmonicity of the ENM potential function affects

ENM-based modeling of atomic fluctuations in protein

crystal structures. To this end, this study proposes and

evaluates the ANMA protocol (for details, see Methods):

1), I solve a subset of lowest normal modes for an isolated

protein structure modeled by ENM; 2), I sample the ENM

potential energy function along the direction of the eigen-
vector of each mode, and evaluate the MSF along these

directions; and 3), I construct a covariance matrix to calcu-

late the ADP tensors. As a control, ADP tensors using stan-

dard NMA (43) are calculated. The theoretical ADPs are

compared with experimental ADPs using various metrics

to assess the modeling quality (see Methods). To ensure

the robustness of the modeling results, I consider three

ENM schemes: ANMCa, ANMatom, and DNM (see Methods).

As an example, this work shows the results of ADP

modeling using ANMCa (with Rc¼ 7 Å) for an E. coli 6-hy-

droxymethyl-7,8-dihydropterin pyrophosphokinase (hppk)

crystal structure (PDB code: 1F9Y) (Fig. 1 a). ANMA gives

better agreement between theoretical and experimental

ADPs than does NMA—the Pearson correlations for all,

diagonal, and off-diagonal ADP elements and for B factors

(PCall, PCdiagonal, PCoffdiagonal, PCB; see Methods) increase

from 0.27, 0.18, 0.06, and 0.25 to 0.58, 0.48, 0.30, and

0.60, respectively. For the directional comparison of experi-

mental and theoretical ADPs, this study focuses on 85 of

158 experimental ADPs with anisotropy %0.5 (41). Two

metrics for directional similarity between theoretical and

experimental ADPs (ccmod and KL distance; see Methods)

are calculated, which also indicate improvement from

NMA to ANMA—the average ccmod increases from 0.33

to 0.43 (Fig. 1 c) and the average KL distance decreases

from 0.91 to 0.58 (Fig. 1 d). Compared with NMA,

ANMA has suppressed two pronounced peaks in the theoret-

ical B factors (Fig. 1 b) and KL distances (Fig. 1 d), which

correspond to two floppy loops (residues 45–50 and 85–90)

(Fig. 1 a). The account of anharmonicity by ANMA im-

proves the modeling of atomic fluctuations in these dangling

loops, as suggested by the higher ccmod (Fig. 1 c) and lower

KL distance (Fig. 1 d).
FIGURE 1 The results of ADP modeling for an

E. Coli hppk crystal structure (PDB code: 1F9Y).

(a) A cartoon representation of 1F9Y with two

floppy loops (residues 45–50 and 85–90) colored

black. (b) B factors (rescaled by 3/8p2) from crys-

tallography (dotted line), modeled by NMA (gray

line) and by ANMA with fenv ¼ 0 (black line)

(the positions of the two loops shown in a are

underscored). (c and d) ccmod and KL distance,

respectively, for NMA (gray lines) and ANMA

with fenv ¼ 0 (black lines). (e) B factors (rescaled

by 3/8p2) from crystallography (dotted line),

modeled by ANMA with fenv ¼ 0 (gray line) and

by ANMA with fenv ¼ 0:05 (black line). (f and g)

ccmod and KL distance, respectively, for ANMA

with fenv ¼ 0 (gray lines) and ANMA with

fenv ¼ 0:05 (black lines).

Biophysical Journal 98(12) 3025–3034



FIGURE 3 The results of ADPs modeling averaged over 83 protein

crystal structures (39) using ANMatom and (a) NMA; (b) ANMA

withfenv ¼ 0; (c) ANMA with fenv ¼ 0:05. Shown here are Pearson correla-

tions of diagonal (9), off-diagonal (8), and all elements (7) of ADPs, and

B factors (6), and directional metrics including ccmod (B) and KL distance

(,) as a function of cutoff distanceRatom. Also shown in b is the average

anharmonicity, AH (>).
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The above ADP modeling was conducted for 16,852

ADPs collected from 83 protein crystal structures (39). To

assess the performance of ADP modeling, this study aver-

ages four Pearson correlations (PCall, PCB, PCdiagonal, and

PCoffdiagonal) over 83 structures, and two directional metrics

(ccmod and KL distance) over a subset of 6784 ADPs with

anisotropy %0.5. These average metrics are calculated as

a function of cutoff distance for ANMA and NMA based

on three ENM schemes (ANMCa, ANMatom, and DNM;

see Methods). The results are shown in Figs. 2–4 and Tables

S1–S3. Z scores for the above metrics are calculated to assess

the statistical significance of the improvement from NMA to

ANMA (see Methods).

For ANMCa, significant improvement was found in ADP

modeling from NMA to ANMA, especially for Rc< 10 Å

(see Table S1 in the Supporting Material and Fig. 2, a and b).

For example, for Rc ¼ 7 Å, the average Pearson correlations

(PCall, PCdiagonal, PCoffdiagonal, and PCB) increase from 0.31,

0.22, 0.14, and 0.28 to 0.54, 0.39, 0.26, and 0.47; the average

ccmod increases from 0.45 to 0.50; and the average KL

distance decreases from 0.76 to 0.48. These improvements

are highly significant, as indicated by large Z scores >10

(Table S1). For Rc R 10 Å, the improvement from NMA

to ANMA is smaller. For example, for Rc ¼ 10 Å, the

average Pearson correlations (PCall, PCdiagonal, PCoffdiagonal,

and PCB) increase from 0.43, 0.36, 0.24, and 0.43 to 0.48,

0.40, 0.28, and 0.47; the average ccmod increases from

0.50 to 0.52; and the average KL distance decreases from

0.48 to 0.43. This smaller improvement remains statistically

significant, as the Z scores for all metrics are >5 (Table S1).
FIGURE 2 The results of ADP modeling averaged over 83 protein crystal

structures (39) using ANMCa and (a) NMA, (b) ANMA with fenv ¼ 0, and

(c) ANMA with fenv ¼ 0:05. Shown here are Pearson correlations of diag-

onal (9), off-diagonal (8), all elements (z.7) of ADPs and B factors

(z.6), and directional metrics including ccmod (B) and KL distance (,)

as a function of cutoff distance Rc. Also shown in (b) is the average anhar-

monicity AH (>).
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For ANMatom and DNM, significant improvement was

also found in ADP modeling from NMA to ANMA, espe-

cially at the low cutoff distance Ratom < 8 Å (for details,

see Table S2, Table S3, and Figs. 3, a and b, and 4, a and b).

Therefore, the finding that ANMA improves ENM-based

ADP modeling is robust and does not rely on details of

ENM schemes.

An ENM with low cutoff distance is prone to the so-called

tip effect, which involves some pathological modes

describing anomalously large motions of some protruding

structural elements (such as a dangling loop) while the rest

of the protein remains essentially static (45). The large local

motions in these modes dramatically reduce the accuracy of

harmonic approximation to the ENM potential function (see

Eq. 6), therefore making those modes highly anharmonic.

Indeed, for ANMCa (ANMatom and DNM) the average

anharmonicity AH (see Methods) decreases sharply as

Rc(Ratom) drops below 10 Å (8 Å) (see Figs. 2 b, 3 b, and

4 b). Therefore, it is not surprising that the proper account

of anharmonicity by ANMA significantly improves ADP

modeling at low cutoff distance. Thus, an accurate modeling

of protein atomic fluctuations demands a proper account of

the anharmonicity of the ENM potential function.

Account of protein-environment interactions
further improves ADP modeling by ANMA

Previous studies have shown the significant effect of crystal-

line environment on protein dynamics in crystalline states

(41,43,47,48). In particular, the incorporation of protein-

environment interactions allows proper modeling of the



FIGURE 4 The results of ADPs modeling averaged over 83 protein

crystal structures (39) using DNM and (a) NMA; (b) ANMA with

fenv ¼ 0; (c) ANMA with fenv ¼ 0:05. Shown here are Pearson correlations

of diagonal (9), off-diagonal (8), all elements (7) of ADPs and B factors

(6), and directional metrics including ccmod (B) and KL distance (,) as

a function of cutoff distanceRatom. Also shown in b is the average anharmo-

nicity, AH (>).
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contributions of rigid-body motions of an entire protein to

ADPs (41,43,48), which cannot be easily attained for an iso-

lated protein structure. Therefore, it will be interesting to

incorporate protein-environment interactions in the ANMA

formulation in this study. To this end, a two-component

ENM comprised of a protein structure and its fixed crystalline

environment has been constructed (see Methods). I have

recently found the interactions between a protein and its crys-

talline environment to be much weaker than the intraprotein

interactions (43). ANMA was performed as follows to

account for the protein-environment interactions: first, solve

a subset of lowest normal modes for an isolated protein struc-

ture; then sample the ENM potential energy function (with the

protein-environment interactions included; see Eq. 7) along

the direction of the eigenvector of each mode; then calculate

the ADPs based on the sampling results (see Methods).

As an example, this study shows and compares the results

of ADP modeling by ANMA in the absence and presence

of protein-environment interactions (using ANMCa with

Rc ¼ 7 Å) for an E. Coli hppk crystal structure (PDB

code: 1F9Y) (Fig. 1 a). Large improvement in ADP

modeling is found in terms of the four Pearson correla-

tions—PCall, PCdiagonal, PCoffdiagonal, and PCB change from

0.58, 0.48, 0.30, and 0.60 to 0.75, 0.56, 0.39, and 0.65.

Furthermore, improvement is found in terms of the direc-

tional similarity in ADPs—the average ccmod increases

from 0.43 to 0.66 (Fig. 1 f), and the average KL distance

decreases from 0.58 to 0.18 (Fig. 1 g).

The results of ADP modeling in the presence of protein-

environment interactions for 83 protein crystal structures
(39) are shown in Figs. 2 c, 3 c, and 4 c, and Table S1, Table S2,

and Table S3, which are compared with the results for

isolated protein structures (see Figs. 2 b, 3 b, and 4 b,

and Table S1, Table S2, and Table S3). The findings are

summarized as follows.

For ANMCa, a significant improvement was found in

modeling of the direction of ADP tensors with the addition

of protein-environment interactions (Fig. 2, b and c)—for

example, for Rc ¼ 10 Å, the average ccmod increases from

0.52 to 0.70 and the average KL distance decreases from

0.43 to 0.14. Furthermore, there is large improvement in

the modeling of both magnitude and direction of ADP

tensors as assessed by the four Pearson correlations.

For ANMatom and DNM, a significant improvement was

also found in the modeling of ADP tensors (see Figs. 3,

b and c, and 4, b and c). Therefore, this finding is robust

and does not rely on details of ENM schemes.
Optimal cutoff distances of ENM for ADP modeling
by ANMA

In previous studies, it was found that the optimal fitting of

B-factors by ANMCa is attained at a high cutoff distance

Rc ¼ 15–24 Å (49), which is beyond the range of Ca-Ca

distances between contacting residues (4.4–12.8 Å (50)).

Some recent studies have addressed this inconsistency in

ENM parameterization (43,51). To further address this issue,

this study evaluates the quality of ADP modeling by NMA and

ANMA as a function of cutoff distance using three ENM

schemes (Rc for ANMCa, Ratom for ANMatom, and DNM).

The Rc dependence for ANMCa is summarized in Fig. 2.

For NMA (Fig. 2 a), the Rc dependence of various ADP

comparison metrics diverges: PCdiagonal, PCoffdiagonal, and

PCB saturate as Rc increases from 9 to 20 Å, whereas PCall

peaks at Rc ~ 9 Å; ccmod peaks at Rc ~ 10 Å; and the KL

distance is minimal at Rc ~ 10 Å. Such divergence was

also found in a previous study (43), which makes it hard to

parameterize ENM by optimizing the fitting of ADPs.

For ANMA (Fig. 2 b), the divergence of the Rc dependence

of various ADP comparison metrics is reduced: PCdiagonal,

PCoffdiagonal, PCB and PCall peak at Rc ~ 8 Å, ccmod peaks at

Rc ~ 9 Å, and the KL distance is minimal at Rc ~ 9 Å. Thus,

a consensus-based optimization of various ADP comparison

metrics points to an optimal Rc of ~8–9 Å, which falls well

within the range of Ca-Ca distances between contacting resi-

dues (4.4–12.8 Å (50)). Note that the addition of protein-envi-

ronment interactions does not change the optimal Rc values

(Fig. 2 c).

The Ratom dependence for ANMatom and DNM is summa-

rized in Figs. 3 and 4, respectively. For ANMA based on

ANMatom (Fig. 3 b), the Rc dependence differs among

various ADP comparison metrics: PCdiagonal, PCall and PCB

peak at Ratom ~ 5 Å, PCoffdiagonal peaks at Ratom ~ 7 Å,

whereas ccmod peaks at Ratom ~ 8 Å, and the KL distance

is minimal at Ratom ~ 8 Å. The optimal Ratom values are
Biophysical Journal 98(12) 3025–3034



FIGURE 5 The density functions for the statistical distributions of

distances between (a) Ca atoms and (b) heavy atoms of nonbonded residues

in 83 protein crystal structures (39). r(r) is rescaled by the density function

r0 for a uniform distribution. The same statistical distributions (not shown

here) are obtained from a much larger set of>2000 protein crystal structures

(cullpdb_pc30_res1.6_R0.25_d081223_chains2039, downloaded from

http://dunbrack.fccc.edu/PISCES.php).
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only slightly shifted with the addition of protein-environ-

ment interactions (Fig. 3 c).

For ANMA based on DNM, the results are similar. For

example, ccmod peaks at Ratom ~ 9 Å, and the KL distance

is minimal at Ratom ~ 9 Å (Fig. 4 b), which agrees with the

results of Riccardi et al. (41). The optimal Ratomvalues are

only slightly shifted with the addition of protein-environ-

ment interactions (Fig. 4 c).

This work’s finding that the optimal modeling of the direc-

tion of ADPs by ANMatom (DNM) is at Ratom ~ 8 Å (9 Å) is

surprising, because this heavy-atom distance is beyond the

range of van der Waals interactions (<4 Å as estimated

based on van der Waals radii (52)) or hydrogen-bond inter-

actions (<4.5 Å as defined in the CONGEN program (53)).

Statistical distribution of atomic distances agrees
with optimal cutoff distances

To rationalize the finding of an optimal cutoff distance of

~10 Å for ANMCa, this work analyzes the statistical distribu-

tion, r(r), of distances between the Ca atoms of nonbonded

residues of 83 protein crystal structures (39). r(r) is given by

f(r)/4pr2, where f(r) is the percentage of all Ca-Ca distances

within the range (r� 0.5, rþ 0.5), and r is sampled at integer

values (in Å). It is interesting that this study found that r(r)

has a primary peak around 5–6 Å and a secondary peak at

10 Å (Fig. 5 a). These two peaks correspond to two minima

of a statistical potential function based on Ca-Ca distances.

The coincidence of the secondary peak of r(r) and the

optimal Rc for ANMCa hints at the presence of effective

interactions between residues separated by a Ca-Ca distance

of %10 Å, which is important to protein dynamics.

In a similar way, to rationalize the finding of an optimal

atomic distance of ~8 Å (9 Å) for ANMatom (DNM), this

work analyzes the statistical distribution of distances between

the heavy atoms of nonbonded residues of 83 protein crystal

structures (39). The distribution shows a broad peak ranging

from 5 to 10 Å (Fig. 5 b), which suggests the presence of statis-

tical interactions between heavy atoms from different residues

separated by %10 Å. This value is beyond the range of van der

Waals or hydrogen-bond interactions. The idea that long-range

electrostatic interactions may be the cause is ruled out, because

the same distribution is obtained after charged residues are

excluded from the statistical analysis. This observation roughly

agrees with this study’s finding of Ratom ~ 8 Å (9 Å) as the

optimal atomic distance for ANMatom (DNM). Taken together,

these findings support the presence of indirect interactions

between atoms separated by %10 Å and the importance of

these interactions to protein dynamics. Such effective interac-

tions may arise as a result of averaging over some hidden vari-

ables (such as multiple substates of a protein native state).

DISCUSSION AND CONCLUSION

To account for the anharmonic aspects of protein dynamics,

this study has used ANMA to model the ADPs from a set of
Biophysical Journal 98(12) 3025–3034
83 high-resolution protein crystal structures. Significant

improvement was found in the modeling of ADPs by

ANMA compared with standard NMA. Further improve-

ment in the modeling of ADPs is attained if the interactions

between a protein and its crystalline environment are taken

into account. In addition, this work has determined the

optimal cutoff distances for ENM-based ADP modeling,

which agree well with the peaks of the statistical distribu-

tions of distances between Ca atoms or heavy atoms deduced

from a large set of protein crystal structures.

This work applied ANMA to explore the anharmonicity of

the ENM potential function (Eq. 1). It is straightforward to

apply ANMA to any other anharmonic potential function

(such as a Lennard-Jones potential). In fact, I applied

ANMA to the generalized potential function

EnðdijÞ ¼ 0:5Cij d2
ij;0=n2ð1� dn

ij;0=dn
ijÞ

2
, which is reduced to

the ENM potential in Eq. 1 when n ¼ �1 and to a Len-

nard-Jones potential when n ¼ 6. The application of

ANMA to this generalized potential function, however,

http://dunbrack.fccc.edu/PISCES.php
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does not lead to further improvement of ADP modeling (data

not shown).

In this study, the anharmonicity, AH, is found to be <1

(see Figs. 2 b, 3 b, and 4 b). Therefore, anharmonicity of

the ENM potential function results in the stiffening of a

normal mode (or reduction of the MSF along the direction

of its eigenvector). This finding complements the early find-

ings of a softening of normal modes due to the presence of

multiple potential energy minima (27,29).

By using a fixed set of eigenvectors solved by standard

NMA, this study focuses on the anharmonic effect on the

magnitude of atomic fluctuations. It will be interesting to

explore in future studies the anharmonic effect on the direc-

tion of atomic fluctuations.

This study offers a new avenue to the accurate parameter-

ization of ENM beyond the limit of harmonic approximation.

The correlation of optimal ENM parameters with statistical

distributions of atomic distances may also offer a systematic

way to develop ENM parameters based on residue type.

A more accurate ENM is essential to the development and

refinement of ENM-based techniques that probe protein

dynamics of functional relevance (54–57).
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